Posts
Personal Projects and Experiments, presented as a series of Blog Posts
Welcome to the Rough AI Blog.
Personal Projects and Experiments, presented as a series of Blog Posts
Small Autoregressive Language Models like GPT do not always produce desirable outputs. To make the model remember certain pattern of desired output, we use Bounded Memory to localize the context and move the hidden representations towards desired output token (or words). We use series of steps to successfully memorize a fact in the language model.
The difficulty of understanding 1D ReLU-based Piecewise MLP guides us to work on Piecewise Linear Spline, its benefit for interpretation and ease of control. This experimental research starts with defining linear spline and deriving its gradient function. Finally, we create an algorithm to dynamically adjust the pieces of the linear spline to approximate some functions.
A Journey From Perceptron to Deep Neural Networks in a sequential fashion. Start with Perceptron, move to Logistic Regression, Single Layer Neural Network, Multilayer Perceptron (1 hidden layer) and finally to Deep Neural Network. Understand the algorithms sequentially along with visualization and math.
Artificial Neural Network (ANN) is one of the most popular Machine Learning Algorithm. As the name suggests, the algorithm tries to mimic the Biological Neural Network, i.e. the Brain. In this post, we explore the development of the Algorithm from the very begining till development of Multilayer Perceptron.
Polynomial Regression is the generalization of Linear Regression. It is simple to understand but can do a lot. It is used to approximate any Non-Linear functions, which is almost always better than Linear Regression. Here, we extend the idea of curve fitting, learn its capacity, problems and its limitations.